

#### Introdutelitor

- Facility Information
- Mechanical Information
- •Goals
- •CHP Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

## **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

# **Facility Information**

Location: Fort George G. Meade, MD

Total Cost: \$56,000,000

Occupancy: Office, Media Center

Delivery Method: Design-Bid-Build

Architect: HOK

Engineers: AECOM | HSMM

Owner: Army Corps of Engineers

Construction Period: Spring 2009 to September 2011





Facility Information

#### Mechanical Information

- •Goals
- •CHP Analysis
- •Thermal Storage Analysis
- System Optimization Analysis
- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

# **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

# **Mechanical Information**

Air Delivery System: Chilled Water System: Economizer:

Distribution System: Hot Water System: Control System: Variable Air Volume
(3) 500 Ton Water Cooled Chillers
Waterside Used for Data Center
Airside Used in AHU's
Primary/Secondary Flow

(3) 3000 MBH Condensing Boilers Direct Digital Control using BACnet





#### Introdutelite

- Facility Information
- •Mechanical Information

#### Gloals

- •CHP Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

# **DMA Building**

Fort George G. Meade, MD

# Pavel Likhonin Mechanical Option

# Goal:

Minimize Costs Spent on Energy Consumption, Making the Building Less Expensive and More Efficient to Operate







Introduction

- •Energy Cost Savings
- Payback PeriodSensitivity Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
  •Electrical Analysis
- Acoustical Analysis
- •Conclusion
- Acknowledgements
- Questions

## **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

| 888         |        |                                                           | CUD O .: |                                       |                                                        |  |  |
|-------------|--------|-----------------------------------------------------------|----------|---------------------------------------|--------------------------------------------------------|--|--|
| CHP Options |        |                                                           |          | CHP Options                           |                                                        |  |  |
| e           | System | Description                                               | Type     | System                                | Description                                            |  |  |
|             |        | 2390 kW Jenbacher IC Engine running at full load          | S        |                                       | 1801 kW Jenbacher IC Engine running to meet base       |  |  |
|             |        | 800 Ton Single Stage Absorption Chiller used to cover     | ne       |                                       | ELECTRICAL LOAD                                        |  |  |
|             |        | LOADS OF THE BUILDING                                     | 00 c     | -                                     | BUY SUPPLEMENTAL ELECTRICITY FROM THE GRID             |  |  |
|             |        | A boiler is used to make up needed thermal energy for     |          | 800 ton Sing Stage Absorption Chiller |                                                        |  |  |
|             |        | THE ABSORPTION CHILLER                                    |          |                                       | A boiler is used to make up needed energy for the      |  |  |
|             | В      | 2390 kW Jenbacher IC Engine running at full load          |          |                                       | Absorption Chiller                                     |  |  |
|             |        | (3) 500 ton Electrical Chillers used to cool the building |          |                                       | 1200 kW Saturn 20 Turbine used to meet base load       |  |  |
|             |        | Thermal energy is wasted                                  |          |                                       | BUY SUPPLEMENTAL ELECTRICITY FROM THE GRID             |  |  |
|             |        | 2390 kW Jenbacher IC Engine running at full load          |          |                                       | 800 ton Single Stage Absorption Chiller                |  |  |
| Н           | _      | 700 ton Single Stage Absorption chiller                   |          |                                       | 1200 kW Saturn 20 Turbine                              |  |  |
| 6           |        | 300 ton Electric Chiller used to meet loads not met with  | S        |                                       | BACK PRESSURE STEAM TURBINE RUNS OFF HIGH PRESSURE     |  |  |
|             |        | an Absorption Chiller                                     | е н      |                                       | STEAM CREATED BY THE TURBINE                           |  |  |
|             |        | 2390 kW Jenbacher IC Engine running to meet electrical    | . ≒      | Gas Turbii<br>-                       | 800 ton Absorption Chiller                             |  |  |
| 1           | D      | LOAD                                                      | 1 =      |                                       | A boiler is used to make up needed thermal energy for  |  |  |
|             |        | 800 ton Single Stage Absorption Chiller                   | ■ 2      |                                       | THE ABSORPTION CHILLER                                 |  |  |
|             |        | A boiler is used to make up needed thermal energy for     | S        |                                       | 1200 kW Saturn 20 Turbine                              |  |  |
| L           |        | THE ABSORPTION CHILLER                                    | ß        |                                       | BACK PRESSURE STEAM TURBINE RUNS OFF HIGH PRESSURE     |  |  |
|             |        | 2390 kW Jenbacher IC Engine running to meet electrical    |          |                                       | STEAM CREATED BY THE TURBINE                           |  |  |
|             |        | LOAD AS WELL AS PEAK ELECTRIC CHILLER LOAD                |          |                                       | 400 ton Single Stage Absorption Chiller used to cover  |  |  |
|             | E      | 650 ton Single Stage Absorption Chiller                   |          |                                       | LOADS OF THE BUILDING                                  |  |  |
| 1           |        | 300 Ton Electric Chiller meets loads not met by an        |          |                                       | 500 ton Electric Chiller used to meet loads not met by |  |  |
|             |        | Absorption Chiller                                        |          |                                       | AN ABSORPTION CHILLER                                  |  |  |











- Introduction
- CHP Analysis
- - Concept

  - Payback Period
  - Sensitivity Analysis
- System Optimization Analysis
- •Electrical Analysis
- Acoustical Analysis
- •Conclusion
- Acknowledgements
- Questions

**DMA Building** 

Fort George G. Meade, MD

**Pavel Likhonin** 

**Mechanical Option** 

# Yearly Energy Cost Savings

- Ice storage produced negative savings from this analysis due to inefficiency of making ice and low electric rates.
- Peak demand was determined on a monthly basis.
- On-Peak to Off-Peak shift was determined on a daily basis.

Chilled Water Storage Savings

Demand Savings: \$3,617.22 On-Peak Savings: \$7,025.21 Total Yearly Savings: \$10,643.43





- Introduction
- •CHP Analysis

#### Thermal Storage Analysis

- Concept
- Energy Cost Savings

#### - Payback Period

- Sensitivity Analysis
- System Optimization Analysis
- Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

#### **DMA Building**

Fort George G. Meade, MD

## **Pavel Likhonin**

**Mechanical Option** 

# Simple Payback Period

- Initial Investment was determined based on a 3,500 Ton-hr, 400,000 Gallon Tank and required accessories such as pumps, piping, etc.
- Due to N+1 Redundancy requirements, One chiller/cooling tower could be removed, and the remaining chillers/cooling towers have to be upsized to 600 tons.

Initial Investment: \$173,666 Simple Payback Period: 16.32 Years







- Introduction
- •CHP Analysis
- •Thermal Storage Analysis
- System Optimization Analysis
  - Thermal Storage & CHP - Intro/Energy Cost Savings
    - Initial Investment
    - Payback Period
  - Data Center Chiller
  - •DOAS
- •Electrical Analysis
- Acoustical Analysis
- •Conclusion
- Acknowledgements
- Questions

## **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

# Yearly Energy Cost Savings

- CHP System A was used for this System Optimization Analysis
  This system had the largest amount of wasted heat, which makes it a good candidate for integration with thermal storage.
- Hour by hour storage analysis was performed on storage and waste heat from the CHP plant

Yearly Energy Cost Savings: \$11,644





- •Introduction
- •CHP Analysis
- •Thermal Storage Analysis
- System Optimization Analysis
   Thermal Storage & CHP
  - •Intro/Energy Cost Savings
  - Haitial Investmen
  - Payback Period
  - •Data Center Chiller
  - •DOAS
- Electrical Analysis
- Acoustical Analysis
- Conclusion
- •Acknowledgements
- Questions

# **DMA Building**

Fort George G. Meade, MD

### **Pavel Likhonin**

| Initial Investment for Thermal Storage with CHP       |    |              |  |  |  |
|-------------------------------------------------------|----|--------------|--|--|--|
| 350,000 Gallon Tank                                   | \$ | 354,200.00   |  |  |  |
| 300 Feet of 5" Pipe                                   | \$ | 10,500.00    |  |  |  |
| 300 Feet of 2" Insulation for 5" Pipe                 | \$ | 5,874.00     |  |  |  |
| (2) 15 HP Pumps                                       | \$ | 10,220.00    |  |  |  |
| One Less (500 Ton) Chiller                            | \$ | (293,062.50) |  |  |  |
| One Less (500 Ton) Cooling Tower                      | \$ | (50,472.80)  |  |  |  |
| Increasing Size of Original Chiller (500 to 650 tons) | \$ | 71,200.00    |  |  |  |
| Increasing Size of Original Towers (500 to 650 tons)  | \$ | 14,950.00    |  |  |  |
| Total                                                 | \$ | 123,408.70   |  |  |  |
|                                                       |    |              |  |  |  |



- Introduction
- •CHP Analysis
- •Thermal Storage Analysis
- System Optimization Analysis
  - Thermal Storage & CHF
    - Intro/Energy Cost Savings
    - Initial Investment
    - to<mark>Palylagiski</mark>Penici
  - •Data Center Chiller
  - •DOAS
- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

## **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

# Simple Payback Period

- Integrating thermal storage into a CHP system produced slightly better results than thermal storage on its own.
- Due to a smaller tank, and slightly larger yearly savings, the simple payback period for thermal storage was around:

10.6 Years







- Introduction
- •CHP Analysis
- •Thermal Storage Analysis

- •Thermal Storage & CHP
- - •Energy Cost Savings
- •Payback Period
  •DOAS
- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- •Acknowledgements
- Questions

## **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

Dedicating a Chiller to the Data Center to Increase Efficiency







- Introduction
- •CHP Analysis
- •Thermal Storage Analysis

#### System Optimization Analysis

- •Thermal Storage & CHP
- Data Center Chiller
  - Concept
  - Energy Cost Saving:
  - •Payback Period
- •DOAS
- •Electrical Analysis
- Acoustical Analysis
- •Conclusion
- Acknowledgements
- Questions

# **DMA Building**

Fort George G. Meade, MD

# Pavel Likhonin

**Mechanical Option** 

| Cooling Cost of the Data Center |            |               |  |  |
|---------------------------------|------------|---------------|--|--|
| Temperature                     | MMBTU/year | Savings \$/yr |  |  |
| 44° F                           | 15137.0    | -             |  |  |
| 55° F                           | 14065.4    | \$28,155.00   |  |  |
| 60° F                           | 13046.8    | \$54,946.00   |  |  |

Even with higher pumping costs, the total energy savings from running a chiller at higher temps was substantial





- Introduction
- •CHP Analysis
- •Thermal Storage Analysis

#### System Optimization Analysis

- •Thermal Storage & CHP
- •Data Center Chiller
  - Concept
  - Energy Cost Savings
  - -Payloadk Period
- •DOAS
- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

#### **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

# Simple Payback Period

- Initial Investment for dedicating a chiller only involved adding in a few valves, (2) pumps, and some piping.
- •The simple payback period calculated for running a chiller at 55° F was less than a year.





- Introduction
- •CHP Analysis
- •Thermal Storage Analysis

#### System Optimization Analysis

- •Thermal Storage & CHP
- •Data Center Chiller

#### •DOA

- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

# **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

## DOAS

- DOAS paralleled with Chilled Beams was modeled in TRACE 700 for annual energy and cost savings
- •Only lower energy density areas were modeled as DOAS with Chilled Beams
  - •Annual Energy Savings:
  - •Annual Cost Savings:



1,913 x 10<sup>6</sup> [BTU/yr] \$46,949





- •Introduction
- •CHP Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis

#### **HEICHING Analysis**

- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

# **DMA Building**

Fort George G. Meade, MD

# **Pavel Likhonin**

**Mechanical Option** 

# **Electrical Schematic for CHP Interface**





- Introduction
- CHP Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- Electrical Analysis

#### •Acoustical Amalysis

- •Conclusion
- Acknowledgements
- •Questions

# **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**









- Introduction
- •CHP Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Electrical Analysis
- Acoustical Analysis

#### Condition

- •Recommendation
- Acknowledgements
- Questions

## **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

**Mechanical Option** 

# Conclusion

CHP System E Yearly Savings: \$578,552

Chilled Water Storage Yearly Savings: \$10,643

Chilled Water Storage W/CHP System A Savings: \$11,644

Dedicated Chiller to Data Center @ 55° F: \$28,155

DOAS (Office) Yearly Savings: \$46,949







- Introduction
- •CHP Analysis
- •Thermal Storage Analysis
- •System Optimization Analysis
- •Electrical Analysis
  •Acoustical Analysis
- Conclusion

Questions

**DMA Building** 

Fort George G. Meade, MD

**Pavel Likhonin Mechanical Option** 

Acknowledgements:

Special Thanks To: **AE Faculty** &

Family and Friends









## **DMA Building**

Fort George G. Meade, MD

#### **Pavel Likhonin**

| Initial Investment by CHP System |                 |  |  |  |  |  |
|----------------------------------|-----------------|--|--|--|--|--|
|                                  |                 |  |  |  |  |  |
| System                           | Cost            |  |  |  |  |  |
| Α                                | \$ 2,754,407.05 |  |  |  |  |  |
| В                                | \$ 2,483,717.55 |  |  |  |  |  |
| С                                | \$ 2,478,387.55 |  |  |  |  |  |
| D                                | \$ 2,800,156.55 |  |  |  |  |  |
| E                                | \$ 2,439,842.55 |  |  |  |  |  |
| F                                | \$ 2,381,676.53 |  |  |  |  |  |
|                                  |                 |  |  |  |  |  |

| Initial Investment for Thermal Storage  |    |              |  |  |
|-----------------------------------------|----|--------------|--|--|
| 400,000 Gallon Tank                     | \$ | 382,800.00   |  |  |
| 300 Feet of 5" pipe                     | \$ | 10,500.00    |  |  |
| 300 Feet of 2" Insulation for 5" Pipe   | \$ | 5,874.00     |  |  |
| (2) 15 HP pumps                         | \$ | 10,220.00    |  |  |
| One Less Chiller                        | \$ | (293,062.50) |  |  |
| One Less Cooling Tower                  | \$ | (50,472.80)  |  |  |
| Increasing size of original<br>Chillers | \$ | 94,648.00    |  |  |
| Increasing size of original<br>Towers   | \$ | 13,160.00    |  |  |
| Total                                   | \$ | 173,666.70   |  |  |



| Initial Investment for Thermal S      | Initial Investment for Thermal Storage with CHP |              |  |  |  |
|---------------------------------------|-------------------------------------------------|--------------|--|--|--|
| 400,000 Gallon Tank                   | \$                                              | 354,200.00   |  |  |  |
| 300 Feet of 5" Pipe                   | \$                                              | 10,500.00    |  |  |  |
| 300 Feet of 2" Insulation for 5" Pipe | \$                                              | 5,874.00     |  |  |  |
| (2) 15 HP Pumps                       | \$                                              | 10,220.00    |  |  |  |
| One Less Chiller                      | \$                                              | (293,062.50) |  |  |  |
| One Less Cooling Tower                | \$                                              | (50,472.80)  |  |  |  |
| Increasing Size of Original Chiller   | \$                                              | 71,200.00    |  |  |  |
| Increasing Size of Original Towers    | \$                                              | 14,950.00    |  |  |  |
| Total                                 | \$                                              | 123,408.70   |  |  |  |

- Introduction
- •CHP Analysis
- •Thermal Storage Analysis
- System Optimization Analysis
- •Electrical Analysis
- Acoustical Analysis
- Conclusion
- Acknowledgements
- Questions

#### **DMA Building**

Fort George G. Meade, MD

# **Pavel Likhonin**

|           | CO2e Savings when compared to Grid |                   |                   |                   |                   |                   |                   |  |
|-----------|------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|           |                                    | A                 | В                 | С                 | D                 | E                 | F                 |  |
|           | kWh                                | 20,936,400.00     | 20,982,933.93     | 20,936,400.00     | 16,673,858.17     | 17,305,591.92     | 15,776,760.00     |  |
| IC Engine | BTU                                | 74,893,389,355.47 | 71,635,736,437.02 | 71,476,869,600.00 | 70,082,301,286.29 | 59,081,290,819.32 | 53,861,858,640.00 |  |
|           | CO2e (lb)                          | 10,260,394.34     | 9,814,095.89      | 9,792,331.14      | 9,601,275.28      | 8,094,136.84      | 9,011,793.30      |  |
| Grid      | kWh                                | 18,602,443        | 18,602,443        | 18,602,443        | 18,602,443        | 18,602,443        | 18,602,443        |  |
| Grid      | CO2e (lb)                          | 33,856,445.42     | 33,856,445.42     | 33,856,445.42     | 33,856,445.42     | 33,856,445.42     | 33,856,445.42     |  |
|           | Savings (lb)                       | 23,596,051.08     | 24,042,349.53     | 24,064,114.29     | 24,255,170.15     | 25,762,308.58     | 24,844,652.12     |  |

- •Equivalent of removing 1,916 cars!
- •Spark Gap: \$18.99
- •O&M costs from EPA.gov: \$0.005/kWh
- •Assumed 40% Elect. Efficiency at 75% load. From manufacturer, full load electrical efficiency is 42.6%
- •System E never drops below 75% of the load, making load following very efficient
- •Thermal to Electric Ratio of 0.85 to 1.25 during the peak summer months



